Hybrid Fuel Cell Application Trainer – Automotive Training –

Hybrid Energy Lab System

With API Possibility of HG integration

ACADEMIA OFFERING

Modern Transportation Technologies Require Advanced Engineering Education and Training

For environmental reasons and reacting to the finiteness nature of fossil fuels, the automotive industry is going through yet another shift that includes the introduction of electric drive vehicles. This change is driving the need for a workforce with new technical and engineering capabilities able to handle the complex demands.

Students will need to have advanced skills for electric drive vehicles, this includes Battery Electric Vehicles (BEV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicles (PHEV), Extended Range Electric Vehicles (EREV), Fuel Cell Electric Vehicles (FCEV), and Fuel Cell Hybrid Electric Vehicles (FCHEV).

Technical training and engineering schools, colleges and universities are required to modify their programms to bring these new technologies into the lecture halls and to their students. Heliocentris offers hands-on training systems that are designed to help students acquire the necessary knowledge, competences and skills to work with existing and future electric drive systems.

Hybrid Fuel Cell Application Trainer – the All-rounder Training System

The Hybrid Fuel Cell Application Trainer is ideal for the modulation of various real-word energy applications, focusing on design and hybridization aspects of a battery hybrid fuel cell system. The trainer can be used to simulate:

- » Hybrid Electric Vehicle Power Supply
- » Uninterruptable Power Supply (UPS)
- » Autonomous Power Supply
- » Portable Power Supply

Automotive Training - Experiments

The Hybrid Fuel Cell Application Trainer is designed with the same configuration as a typical Fuel Cell Hybrid Electric Vehicle. It features a Nexa® fuel cell module, hydrogen storage tanks, a lead battery, power electronics and a control software.

However, fuel cells can be integrated in vehicles in different ways, and the Nexa® Training System makes it possible to explore three different scenarios:

- » Fuel cell system is directly connected to the motor
- » Fuel cell system recharges the battery bank (main source of energy) for range extension
- » fuel cell runs when the motor needs more power or the battery bank is depleted

The different components can be examined individually or combined which is ideal to study various topics of Hybrid (Fuel Cell) Electric Vehicles:

- » Driving cycles, driving range and load profiles
- » Hybridization: fuel cell and battery technology
- » Dimensioning of hydrogen and battery capacity
- » Refilling behavior
- » Fuel cell as range extender
- Energy conversion, consumption and system efficiency
- » Serial and parallel hybrid drive modes
- Battery tests: (dis-) charging characteristics, battery capacity
- » Hydrogen storage: weight volume tests
- » Simulation: design an optimized hybrid fuel cell car
- » Fuel Cell: thermal management, efficiency, losses, e.g.

The training system can supply a 1200 W load (e.g. an electric motor). Also, the 1200 W Nexa[®] fuel cell can also be dismantled from the training system and instead be used for fuel cell hybrid automotive application projects.

AUTOMOTIVE TRAINER

Technical Data

Nexa® Training System - Hybrid energy Lab System			Battery Module
Dimensions (W x H x D)	520 x 1330 x 600 mm		Battery set 1
Weight approx.	200 kg		Dattern est 2
Permissible environment temperature during operation	+ 15 +40°C		Safety element
Connection standards	DIN, CGA, BS		Power Electror
Mains Connection	230 V (50 Hz), 115 V (60 Hz)		DC Converter v
Fuel Cell Module			Rated output v
Fuel Cell System			Output voltage
Rated output as delivered	1200 W		Rated output of
Rated current	65 A DC		Max output po
Operating voltage	20 35 V DC		Max. inlet volta
Maximum hydrogen consumption rated output	at 15 sl/min		Max. inlet volta
Hydrogen purity for operation	4.0 (99,99 %)		Efficiency
Permissible H ₂ inlet pressure	1 14 bar		Inverter
H ₂ Flow Meter			Continous outp
Measuring range	0,6 30sl/min		Output voltage
Measuring accuracy	+ 1.5 % from the end value	2	Output signal for
			Efficiency
Sensor standard range	0.00 4.00 Vol. %		H ₂ Storage Mod
PC and Software			Hydrogen inlet
19" all-in-one PC, keyboard, mous	se		Hydrogen outp
Windows 7 and software pre-			Hydrogen man
installed		C	Metal Hydride
Electronic Load			Storage capaci
Max. continous power output	1200 W		of 17 bar)
DC load voltage	0 80 V DC		Output (contine
DC load current	0 85 A DC		Loading press
Load resistance	0.08 30 0		Loading prosse
Mains connection	230 V (50 Hz), 115 V (60 Hz)		Safety element
Communication	USB		

Battery set 1	low capacity 24 V (2 x 12 V), 1.9 Ah		
Battery set 2	high capacity 24 V (2 x 12 V), 18 Ah		
Safety elements	fuse, 2 x temperature sensors		
Power Electronics Module			
DC Converter with Integrated Load Regulator			
Rated output voltage	24 V DC		
Output voltage range	0 32 V DC		
Rated output current	55 A DC		
Max. output power	1500 W		
Max. inlet voltage range	12 45 V DC		
Max. inlet voltage range	45 V DC		
Efficiency	> 96%		
Inverter			
Continous output power	1500 W		
Inlet voltage	24 V		
Output voltage	110/230 V (60/50 Hz)		
Output signal form pure sine	pure sine (THD < 3%)		
Efficiency	8789 % (110/230 V)		
H ₂ Storage Module			
Hydrogen inlet	loading pressure max. 14 bar		
Hydrogen output	014 bar, fill-level dependent		
Hydrogen manometer	0 25 bar		
Metal Hydride Canisters			
Storage capacity (at charge pressure of 17 bar)	max. 3 x 760 sI hydrogen (2280 sI hydrogen)		
Output (continous, at room temperature)	max. 16.5 sl/min		
Loading pressure	10 17 bar		
Safety elements	3 x temperature sensors, pressure relief valve, hydrogen safety switch, manometer		

Heliocentris

Heliocentris Academia International GmbH Rudower Chaussee 30 12489 Berlin, Germany T +49 30 340 601 600 sales@heliocentrisacademia.com www.heliocentrisacademia.com

 $^{\ensuremath{\mathbb{C}}}$ Heliocentris Academia GmbH, 2017. Subject to modification.